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2bstract

A {7,2}-matching is an assignment of the integers 0,2 to the edges of

a graph G such that for every node the sum of the integers on the incident
edges is at most two. A tour is the O-l-incidence vector of a hamilton
cycle. We studv the polytope P(G), defined to be the convex hull of the
{0,2)}-matchings and tours of G. When ©C has an odd number of nodes,
the travelling salesman polytope, the convex hull of the tours, is a facet
of P(G). We obtain the following results:

i) We completely characterize those facets of P(G) which can be .
induced by an inequality with O-1l-coefficients.

ii) We prove necessary properties for any other facet inducing inequality,
and exhibit a class of such inequalities with the property that for any
pair of consecutive positive integers, there exists an inequality in our
alass whose coefficients include these integers.

iii) We relate the facets of P(G) to the facets of the travelling
salesman polvtope. In particular, we show that for any facet F of the
travelling salesman polytope, there is a unique facet of P(G) whose

intersection with the travelling salesman polytope is exactly F.




1. Introduction

Let G = (V,E) be a finite undirected graph and let ¢ = (cj: j € E)

be a vector of real edge costs. The infamous travelling salesman problem
is to find a hamilton cycle of G, the sum of whose edge costs is minimum.
(If G has no hamilton cycle, this fact should be discovered.) A major
o obstacle to be overcome in this process is the verification of a proposed
optimum tour. Indeed, even if one has discovered the optimal tour, but is
i forced to convince a nonbeliever of the tours optimality, it is generally
necessary to perform a quantity of work effectively as large as that per-
formed in finding the optimum tour in the first place.
This need for a good optimality condition prompted the development of the
area of polyhedral combinatorial optimization. This approach was pioneered
.‘ by Jack Edmonds in solving matching problems [3], matroid optimization
problems [4], (5] and as a special case, branching problems [6]. The idea
is to represent the feasible solutions to a discrete optimization problem
by their incidence vectors and consider the convex hull of these vectors
viewed as points of R". If a linear system sufficient to define such a

polyhedron can be discovered, then linear programming duality theory provides

a general min-max optimality criterion.
So far, the results obtained using this approach have not been as

successful for the travelling salesman problem as for these othe> problems.

[,

At present no complete characterization of a linear system sufficient to

define the convex hull of the set of incidence vectors of the hamilton cycles

o

-the so called travelling salesman polytope- is known. The first extensive
study of this polytope was carried out by Grdtschel [7] as a part of his

doctoral dissertation. This continued earlier work of Chvatal [1] who intro-
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duced the class of " comb inequalities'", which is at present the largest
known class of essential inequalities for the travelling salesman polytope.
The necessity of these inequalities was shown by Grdtschel and Padberg [10].
Other results on the travelling salesman polytope have been obtained by
Grdtschel [8] and Maurras [13]. However, even though the incompleteness of
these linear systems is unsatisfying from a theoretical point of view, these
partial systems have provided the basis for successful cutting plane

.
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approaches to "real world” problems. See Grdtschel [9], Padberg and Hong [14].
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There is a problem that arises when dealing with the travelling salesman
polytope that does not arise when dealing with the polyhedra of matroids and
matchings: The travelling salesman polytove is not full dimensional. This
means that there does not exist a unique (up to a positive multiple)
minimal defining linear system as there does for these other polytopes. In
fact an inequality can always be replaced by another obtained by multiplying
by a positive constant and adding any linear combination of the equations
which define the affine space containing the polytope. Generally, full
dimensional polytopes seem more pleasant to handle, so what is often done
when studying the travelling salesman polytope is to consider, in fact, the

so called monotone travelling salesman polytope: the convex hull of the

incidence vectors of the hamilton cycles

and all subsets of hamilton cycles of a graph. Then the travelling salesman
polytope is a face of this larger polytope, the face obtained by requiring
Z(xj: j €E) = |V,

We study here a different full dimensional extension of the travelling
salesman polytope. If the number of nodes of G 1is odd, then, again, the
travelling salesman polytope is a proper face of this larger polytope. In
the next section we introduce this polytope and completely characterize all
the essential inequalities of a defining linear system which can be scaled
so as to have 0-1 coefficients. In Section 3 we prove several necessary
properties of any non 0-1 essential inequalities, and give a class of such
inequalities. These inequalities have the property that for G sufficiently
large, any desired consecutive pair of positive integers can be obtained as
coefficients. Finally, in Section 4, we relate the results of Section3 to the
previous known classes of essential inequalities for the travelling sales-
man polytope. In particular, we show that there exists a natural injection
of the set of facets of the travelling salesman polytope into the set of
facets of our polytove.

One point of terminology should be clarified at this point. A facet of a
polytope P 1is a maximal nonempty proper face, that is a face of dimension

one less than that of P. A facet inducing inequality is any inequality which

is satisfied by all members of P, and satisfied with equality by precisely
the members of some facet F of P. For general polytopes, if we have a
minimal defining linear system, then there will be exactly one facet

inducing inequality for each facet of P. If the polytope is of full
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dimension, then every inequality in the svstem will be facet inducing.
However if the polytope is not of full dimension, then this minimal
defining system will also include sufficient linear equalities or inequalities

to determine the affine space containing the polytope.

2. Tours and {0,2)} - matchinos

For any edge j of G = (V,E) we let (i) denote the two nodes of G
incident with j. For any S C V we let 6(S) denote the set of edges
having exactly one end in S and we let y(S) denote the set of edges having
both ends in S. W. -~bbreviate §({v}) bv §&(v) for v € V. For any
J CE and any vector x = (xj: j EE) we let x(J) = Z(xj: j € ). If
K is any graph, we will sometimes use E(K) and V(K) to denote the edge
set and nodeset respectively of K.

Now consider the following linear svstem:

(2.1) 0s X5 $1 for all j € E,
(2.2) x(8(i)) s 2 for all i € V,
(2.3) x(y(s))s |s] -1 for all scCV, [s| 23.

We define a tour to be the incidence vector of the edges of a hamilton
cycle of G. It is easily verified that the integer solutions to (2.1) - (2.3)
are the tours of G and all incidence vectors of collections of node-disjoint
paths. Moreover, if the inequalities in (2.2) are replaced by equations, then
the integer solutions are precisely the tours. (This latter system is one of
the earliest integer programming formulations of the travelling salesman
problem (Dantzig, Fulkerson, Johnson {2]1)). The constraints(2.2) are called

degree constraints; the constraints (2.3) are called subtour elimination

constraints.

Now suppose we remove the upper bound from (2.1). That is, we replace it
with

(2.4) 0s X5 for all j € E.
The set of 0-1 valued solutions obviously remains unchanged but the set of
integer solutions is greatly enlarged. A l-matching of G is a set of edges
meeting each node at most once. We say that it is perfect if it meets each
node exactly once. Let M be a l-matching of G and let x = (xj: j € E)

be defined by 0 if 35 € E-M

I 12 if § e M.
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We call such a vector a {0,2) - matching of G. It is easily verified that

any (0,2} - matching x satisfies (2.2) - (2.4), Conversely, if we let

P(G) denote the convex hull of the tours and {0,2} -matchings of G,
then P(G) is the covex hull of the integer solutions to (2.2) - (2.4).

This—follows from the observation that any integer solution to (2.2)-

(2.4) other than a tour or a {0,2}-matching can be written as a convex

combination .5 x; + .5 X%, where x, and x, are {0,2}-matchings.
In the case that |V | is even, any tour can also be expressed as

.5 x, + .5 x_ , chosine x_ and x, as the two complementary perfect -

(0,2;~matchings contained ;n the edfes of the tour. Thus when | VI is even
the vertices of P(G) are just the {0,2}-matchings. However, when [ V| is
odd, the situation is quite different. Let TSP(G) denote the travelling

salesman polytope of G, i.e.,the convex hull of the set of tours of G. 'i
Then TSE(G) C P(G) and if | V' is odd, then TSP(G) is the face of P(G)

obtained by taking the intersection of P(G) with the affine space defined by

T(2.5) x(6(1)) = 2 for all i € V.
This is because a graph with an odd number of nodes cannot have a perfect
l-matching and therefore if x is a {0,2} -matching of G, then there

must exist at least one node v for which x(8(v)) < 2. Conversely, every
tour of G satisfies (2.5). Therefore, our objective in this section is

to determine several classes of facets of P(G) which we will then relate to TSP(G).

For any S €V we let G[S] denote the node induced subgraph of G
induced by S. We say that S C V is hypomatchable (or l-critical) if for
every v € 3, the graph G{S - {v}] has a perfect 1-matching. Necessarily,
this implies that [S| is odd. Let Q = {S C V: S is hypomatchable} and
let M(G) be the convex hull of the incidence vectors of the l-matchings

of G. Edmonds [3] proved the following:

Theorem 2.1 M(G) = {x € RE:

(2.6) x. 20 for all § € E,
(2.7 x(6(i)) s 1 for all i€V,
(2.8) x(y(8)) s (|s| - 1)/2 for all S € Q).

(In fact, the theorem as stated by Edmonds had Q equal to the set of all

odd cardinality subsets of V. However, the restriction to hypomatchable

sets {s implicit in his algorithm used to prove the theorem.) This system -~

of inequalities is "almost" minimal. Pulleyblank and Edmonds [15] showed that
all the inequalities (2.6) are necessary, all the inequalities (2.7) which de

P
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not violate a rather technical condition are necessary and an inequality
(2.8) is necessa.sy if and only if gls] is noseparable, i.e., contains
no cut node.

Since a vector x is a {0,2} - matching if and only if x/2 is the
incidence vector of a 1l-matching, a linear system sufficient to define the
convex hull of the set of 2-matchings of G can be obtained by simply
doubling the right ._and sides of the linear system (2.6) - (2.8), and
trivially, this linear system defines P(G) for !V! even. But when V|
is odd, there is an inequality of the form (2.8) which requires
x(E) s |V| - 1, and of course, every tour of G violates this inequality.

Since P(G) contains all {0,2}-matchings of G, P(G) is of full dimension
Therefore for each facet F of P(G) there exists a unique (up to a positive
multiple) 1inequality ax S a such that F = {x € P(G) : ax = a}and
every x € P(G) satisfies as $ a. Morecver, the set of all such inequalities
is the minimal defining linear system which we would like to find. Unfortu-
nately, we are unable to explicitly describe this system, but in the
following three propositions we define three classes of such facet-inducing
inequalities. We will then show that every facet-inducing inequality with

0-1 coefficients belongs to one of these classes.

Proposition 2.2 For every J € E, zs 2 0 1induces a facet of P(G).

Proof. Let O denote the zero vector indexed by E and let uk for

k € E denote the vector which is zero everywhere but the kth coordinate

and u: = 2. Then {0} U (uk: k € E - {j}} is a set of |E| affinely
independent vectors satifying xﬁ= 0. Since {x € P(G): x.,= 0} 1is a

proper face of P(G), the dimension of this face is [E] =1 and

the result follows. 0

It is clear that those graphs G which have isolated nodes are uninteresting
from a point of view of P(G), .since their deletion leaves the polytope

unchanged. Henceforth we will always assume that G has no isolated nodes,
however, G need not be connected. Of course, if G is not connected, then

there exist no tours so the result really reduce to results on WM(G).
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Proposition 2.3 For every v € V, x(8(v)) $ 2 does not induce a facet
of P(G) <f and only ©f v has a single neighbor w € V and
§tw) £ 8(v).

Proof. If v has a single neighbor u then any x € P(G) satisfying
2(8(v)) = 2 also satisfies x(8(u)) = 2. If there exists k € &(u) - 8(v)
then the unit vector uk defined in the proof of Proposition 2.2 satisfies
uk(G(u)) = 2 but uk(6(v)) = 0. Therefore {x € P(G): x(&8(v)) = 2} 1is not
a maximal proper face of P(G) and so x(8(v)) = 2 does not induce a

facet.

Conversely, suppose that v has a single neighbor w but &(w) = §(v).

Let h € 8(v). For any jE€E - §(v) let u° be defined by

5. 0 if K ¢ {h,j)
Yk F . :
2 if k € {h,j}.
Then (Gj: JEE- &V} U (" k € 8(v)}  is a set of lEl  affinely
independent (0,2}-matchings of G, all satisfying x(&8(v)) = 2. Therefore
x(6(v)) s 2 induces a facet of P(G).

Finally suppose that v has more than one neighbor. Then for any
j € E - 8(v) there exists a {0,2}-matching ﬁj which is zero everywhere
except for the jth component and one component corresponding to a member of
8(v). Then, as before, {Gj: jEE -8V} U {uk: k € §(v)} 1is a set of
[E| affinely independent {0,2)}-matchings of G satisfying x(&(v)) = 2,

so x(8(v)) < 2 induces a facet of P(G).

(0

In fact, the preceding two propositions and the following one follow
immediately from the facet characterizations [19 of the matching polytope
M(G). For suppose that ax $ a is a facet inducing inequality for M(G)
and that ax £ 2a 1is a valid inequality for P(G). Then there is a set M
of |E! affinely independent incidence vectors x of 1-matchings all
satisfying ax = a. The set M = (2°x : x € M) is then a set of |E|
affinely independent {0,2}-matchings all satisfying ax = 2a , which
establishes that the inequality is facet inducing for P(G).
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If |V| is odd, then, of course, no perfect l-matching or (0,2}-matching
of G can exist. Thus we define an np(''near perfect") l-matching to be
a l-matching which contairs an edge incident with every node of V  but
one. Similarly, an np-{0,2}-matching is a {0,2}-matching x of G satis-
fying x(E) = |v] - 1. In other words, only one node is unsaturated. Then
a graph G 1is hypomatchable if and only if for every v € V, there exists
an np-{0,2}-matching (or a np-l-matching) which leaves v unsaturated.

In [15], the following theorem was proved.

Theorem 2.4 If G s aronegparable hypomatchable araph, then there

exist El np-I-matehings of G, whose incidence vectors are affinely

independent.

This result was proved constructively, via an algorithm which actually
constructed the np-l-matchings. Using this result, it was then shown

' that for S TV such that (S| 2 3, G[S| hypomatchable and non-
separable, the inequality x(y(S)) s ([S| - 1)/2 induces a facet of M(G).
A shorter, nonconstructive proof of this result has been obtained by lovasz,

which we describe here.

Lemma 2.5 For every S C V such that |S! 23 and G[S] is hypomatchable
and nonseparable, x(y(S)) s (|S| =1)/2 induces a facet of M(G).

Proof. (Lovasz). Let X be the set of incidence vectors x of l-matchings

of G which satisfy x(y(S)) = ([S| -1)/2. Since the inequality

x(y(S)s (IS] -1)/2 is easily seen to be satisfied by all members of

M(G), all we need show is that the affine rank of X 1is equal to |E|, or

in other words, there is a unique (up to a positive multiple) nonzero

vector a = (aj: j € E) and scalar o such that ax = a for every

x € X. To do this, we will show that any such a must satisfy aj =k

for some constant k, for all j € v(S) and aj =0 for all j € E - y(S).

For then if we "scale" a by dividing every component by k we see that

this inequality must be a scalar multiple of the inequality x(y(S)) < ([S| - 1)/2.
So suppose there exists i € § such that aj takes on different values

for edges in 68(i) N v(S). Let the graph G' be obtained from G[S]

by "splitting" 1 into two nodes i' and 1'' such that all the edges j

of &8(i) N v(S) for which aj takes on the minimum value are incident

e e e
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with i' and all the others are adjacent with i'" ., Since G[S] was nonse-
parable, 7' 1is connected and in addition must have a perfect 1 -matching.
For if not, by Tutte's theorem {16], there would exist a nonempty subset Y
of the nodes of ' such that deleting Y creates more than |Y| odd car-
dinality components. But then it is easily verified that for any node veY,
if we let v' be the node of G corresponding to v , the graph G{S-{v'}]

does not have a perfect 1-matching contrary to G[S] being hypomatchable.

So let x* be the incidence vector of a perfect matching of A', and let

§' € 8(1i') and j" € 8(i") be such that x:, = x;,, = 1. Let xl and x2 be

obtained froem x* by setting the 3' and 1§ components respectively to zero.

ey
<

2
Then xl, ®x" € ¥ but ax1 > ax” , a contradiction to ax = a for all x € X.
Therefore, the value of aj is constant for all je~v(S) . Moreover, it is

easily verified that for every 3je€E-~Y(?) , there exists x'€X such that
xa =1 . Moreover, the vector x'" obtained from =x' by setting the j-th
component to O also belongs to X . Therefore, we must have aj =0 for

jE€E-Y(S) and the result follows. 0

Proposition 2.6. For every SE€V such that |S{23 and GIS] %s hypo-
matchable and nonseparable, x(x(§)) s (1S|-1) <induces a facet of P(G).

Proof. This is an immediate corollary of Lemma 2.5. 0

The important difference between Lemma 2.5 and Proposition 2.6 is that in
the latter we were forced to restrict S to being a proper subset of V ,
because every tour of G violates the inequality x(E)s |V]-1 . For the case

S=V , we have the following result for P(G) .

Proposition 2.7. Let G'=(V,E') be a spanning subgraph of G which is

hypomatchable , nonseparable and nonhamiltonian and such that E' <s
maximal with this property. Then x(E')s (V| ~1 <induces a facet of P(G).

Proof. Since G' is nonhamiltonian and |V| is odd, every member of P(G)
must satisfy x(E')$[V|-1 . All we need show is that there exist |E| af-
finely independent members of P(G) , all of which satisfy X(E')=|V|-1 .
First we note that since G' 1is nonseparable and hypomatchable, it follows
from Proposition 2.4 that there exists a set X of |E'| affinely indepen-
dent incidence vectors of np - 1 - matchings of G' . Let X be obtained from
X by taking each x€X , doubling it and defining the j - th component to be
zero for all jEE-E' . Then X is a set of IE'I affinely independent
np - {0,2) -~ matchings of G . Moreover, xj =0 for all jEE-E' , for all
XEX . For each jEE-E' , there exists a hamilton cycle whose edges are

]

contained in E'U{j} , by the maximality of E' . Let t’ be the tour cor-
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responding to such a hamilton cycle. Then tJ(E')= |V| -1, for all jE€E-ELE'
and we let T= {t]: jEE-E'}, 1t is easily seen that TUX 1is a set of
[E| affinely independent members of P(G) all satisfying x(E')= (vi-1,

]

since for JEE-E' , t° 1is the only member of TUX for which the j-th

component is nonzero. 0

We note that if G is nonhamiltonian, then the inequality of the previous
proposition is simply x(E)S [v] -1 which is facet inducing for P(G) if and
only if G is nonseparable and hypomatchable. However, when G is hamilto-
nian, then G'must be a proper spanning subgraph of G , which is therefore

not node induced. In general, the number of these subgraphs is very large.

We make use of one more preliminary result. For any X CV let c(X)
denote the number of components of G[V-X] having an odd number of nodes.
Tutte's classical theorem characterizing those graphs having perfect 1 -mat-

chings is the following :

Theorem 2.8 (Tutte [16]). G has a perfect 1-matching <f ard only if for
every X CV, x| ze(x) .

A less classical theorem characterizing those graphs which are hypomatchable

was proved independently by Pulleyblank and Edmonds [15] and Lovasz [11].

Theorem 2.9. G=(V,E) <s hypomatchable if and only <f |V| <s odd and for
every nonempty XcV, |X| ze(X) .

Of course, the important part of this theorem is the sufficiency of the con-
dition, i.e. the assertion that if G is not hypomatchable and |V| is odd
then there exists nonempty X C V such that [X|<c(X) . It is not difficult

to strengthen this in the following manner.

Coroliary 2.10. Let G=(V,E) be a nonhypomatchable graph with |V| odd.
Then there exists nonempty X C V which maximizes c(X)-|X| over all
nonermpty X C V , and such that GLV-Y*] consists only of (at least
|x*| +1 ) hyporatchable components.

Proof. We prove by induction on [V| . If [v[=1 then G is hypomatchable;
if |v] =3 then the assertion is easily checked. Suppose G has k nodes and
the result is true for all smaller graphs. By Theorem 2.9 there exists non-
empty X € V such that c(X )~ Ix] >0, let X* be chosen such that c(X*) -
|X*| is maximum and, subject to this, the numbér of nonhypomatchable components

of G[V-X*] is minimum. If there are no such components, then we are done, so




suppose that S 1is the nodeset of a nonhypomatchable component. If ,SI is
odd, then by induction there is ¢ # Xo C £ such that G[S-XS] consists of
at least szl +1 hypomatchable components. Then

c(x*uxs) - lx*uxsl 2 o(x™) - Ix*]

*
but G[V-(x"UX)] contains fewer nonhypomatchable components than does
*
G[v-Xx 1, a contradiction. If |S| is even then let v be any node of S ,

which is not a cutnode of G[S] and let X'=XU{v} . Then
c(x") - [x'] = c(x®) - |x"]

and if G[S-{v}] 1is hypomatchable, then we have contradicted the choice of

*
X . If not, then as before we use induction to find X, € S- {v} such that

S
X' U)(s contradicts the choice of X . 0

Our next theorem provides a characterization of all those facet inducing

inequalties of P(G) which can be scaled so as to have 0-1 coefficients.

Thus we say that an inequality axsa is a 0-1-inequality if every aj €

{0,-1,1}  we will also say that such an inequality is a 0 -k - inequality if

every aj €{0, -k 4k} for some positive real number k . Then, of course, to
any O-k - inequality there corresponds a (unique) 0~ 1 - inequality obtained

by multiplying by 1/k.

Note that this definition allows us to consider the inequality xj 20 for
j €E (equivalently, -xj $0) as a 0-1-inequality. It might be asked whether
there exist other facet inducing inequalities axsa for P(G) having aj <0
for some j . We can answer this in the negative; all others are obtained from

nonnegativity constraints by scaling.

Lemma 2.11. If arsa <s a facet inducing inequality for P(G) having

aJ. <0 for some J €J, then this tnequality must be aJ.a:J. 2 0.

Proof. Since P(G) is of full dimension, if we let M be the set of {0,2}-
matchings x of G satisfying ax=a and let T be the set of tours t of
G satisfying at=a then the affine rank of X=MUT must be |E| . There-
fore ax=a is the unique hyperplane containing all elements of X . Suppose
aj <0 . If there existed X EM for which 1‘% >0 , then setting the j - th com-
ponent of % to O would yield another (0,7} -matching of G violating
axSa . If there existed t with tj >0 , then setting the j - th component

to zero gives the incidence vector x of a hamilton path of G , for which




ax > a, But x is the average of two {0,2)~matchings of G, at least one
of which must violate ax S a. Thus we must have x. = 0 for all x € X
so ax S a is a positive multiple ¢f the nonnepativity constraint ~Xy s 0.

(

For any J C E we let r{J) denote the maximum vossible value for
x(J} For all {0,2}-matchings and tours x of G. This 'rank" function
is important for it is the smallest possible value for a if the
0-1-inequality x(J) £ o 1is to be valid for P("). “oreover, if a > r(J),
then no member of P(R) can satisfy x(J) = a. Thus r{(J) is the only
possible value for a if x(J) 5 a 1is to induce a facet of FP(n).

Finally, let % denote the set of all v € V such that either v has

at least two neighbors, or, if v has a single neighbor w, then §&(v) = §(w).

Theorem 2.12 The following is the complete set of facet inducing

O-1-tnequalities of P(G):

(2.9) z,20 for all j €EE
(2.10) x(6(7)) <2 forall 1 €W .
(2.11) x(y(S)) s |S| =1 forall SEV, |S) 23,

(8] nonseparable, hypomatchable

(2.12) z(E') s |v] = 1 for all edge maximal spanning subgraphs ¢'=(V,E')
of G which are hypomatchable, nonhamiltonian
and nonseparable.

Proof. We saw in Propositions 2.2,2.3,2.6 and 2.7 that all these inequalities

do induce facets of P(G). Now we show that every facet inducing O-l-inequality
is of one of the above types. Let ax £ a be facet induciner. By Lemma 2.11

if ax 2 « is not of the form (2.9) we must have a 2 0, so let

E' = {j € E: ay = 1}. Then the inequality ax $ a must be x(E') s r(E').

Jack Edmonds observed, in the context of matroid polyhedra, that if such

an inequality is facet inducing, then two properties must hold: First, E'

must be closed, i.e., for every j € E - E', we must have r(E' u {(j}) > r(E").
Otherwise x(E' U {j}) s r(E' U {j}) = r(E') would be a stronger valid
inequality than ax § a, contradicting the necessity of a facet-inducing
inequality. Second, E' must be nonseparable, i.e. there cannot exist

nonempty S,T C E' such that S UT = L' and r(S) + r(T) = r(E'). For

in this case, the inequality x(E') s r(E') 1is implied by the sum of the
inequalities x(S) s r(S) and x(T) § r(T) which means that it can be
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replaced with these two different inequalities, again contradicting the
necessity. So we know that E' is closed and nonseparable.

Let V' be the set of nodes incident with edges in E'. If the graph
G' = (V',E') has a perfect {0,2}-matching or contains a hamilton cycle
of G, then r(E') = [V'| and so ax $ a is implied by one half of the sum
of the degree constraints for the nodes in V'. Since the depree constraints
are valid inequalities the facet ax £ a can be necessary only if it is

identical to a degree constraint (2.10). Furthermore the assumption that G'

has a perfect {0,2}- matching means that V' = {u,v} and &(u) = 86(v) = E'. ) é
' Now suppose that G' is hypomatchable. Then r(E') = [V'[ - 1. If v+ C vy,

then since E' 1is closed we must have E' = y(V'). If G' were separable,

then E' would be separable, so we must have G' = 3{V'] is hypomatchable,

nonseparable, so that ax £ a is an inequality of the form (2.11). If
V' = Vv, then G' 1is a hyromatchable non~hamiltonian spanning subsraoh of G
which must also be nonsenarable and edpe maximal with these nroperties,
since E' is closed and nonseparable. Thus ax s a is a constraint of
‘ the form (2.12).
Next, suppose that G' is not hypomatchable, but |Vv'| is odd. By
Corollary 2.10 there exists nonempty X C V' such that G'[V' - X] consists
of at least |X| + 1 hypomatchable components, and c'(X) - |xI is
‘ maximized, where c'(X) denotes the number of odd components of G'[V' - X].
l If we sum the degree constraints (2.10) for the nodes of X and the con-

straints (2.11) for the node sets of the components of G'[V' - X] (or the

: nonseparable blocks of these components if they contain cutnodes) then we
obtain a valid inequality =x(E) s |v'} - (e¢'(X) - |x|), where E D E'(If

some of these components are single nodes, the constraint (2.11) is trivial

RS §

and can be dropped.)We will show that v(E') = [V'| - (c'(X) - [X])

.~ -
[

which will contadict x(E') s r(E') being a facet, since we can obtain it

Y

(or a stronger inequality) from other inequalities.

Clearly r(E') s |V'| - (c"(X) - x]); all we need do is find some

» ~
x € P(G) giving equality. Construct a bipartite graph G from G’

having one node v(x) for each x € X, one node v(K) for each component
K of G'[V' - X] and an edge joining v(x) and v(K) if and only if x

— AT e

was adjacent (in G') to some node of K. If there is no l-matching which

covers all nodes v{(x) for x € X, then by Hall's theorem, there is a set

. Y
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X € X such that fewer than |§| nodes v(K) for components K of
G'[v' - X] are adjacent to nodes v(x) for x € X. But then

e'(X -X) - |X - X| > ¢'(x) - x| a contradiction. So we can construct x
by letting xf = 2 for each edge corresponding to an edge of a maximum

l-matching of Gy xg be defined equal to an appropriate np-{0,2}-matching

for each component of G'[V' - X] and x; = 0 otherwise. Then x € P(G)
and x (E') = 2|X| + £{|S] = 1 : S is the nodeset of a component of
G'[V' - X] )} = |V'] - (" (X) - |X]).

The final case to consider is that G' 1is not hypomatchable, and

] V’| is even. Since we assume that G' does not have a perfect ¥0,2}- i

matching we can now use a proof that parallels that of the last two

paragraphs. For any v € V' let V" = V' - {v} and c'(X) be the number of

odd components of G'[V"-X]. Consider the maximum value of c(x) = Xl over

all v € V' and all nonempty X ¢ V". To avoid cambersome notation we denote
, by v and X an optimal solution. By Corollary 2.30 we know that X can be {

chosen so that every component of G'[V" - ] 1is hypomatchable, since V") i

is odd. Let X' = X y {v}. As earlier, by summing the degree constraints for the

nodes of X' and the constraints (2.11) for the components of G'{V" - X] we

get the valid inequality x(E) $ IV = (e'(X) ~ 1X'1). Again this inequality

implies =x(E') s r(E') 1if there exists a matching x" € P(G) such that

»*
X (E') = IV'1 - (¢'(X) - 1X'1). Now consider the bipartite graph G with a
node n(x) for each x € X', a node n(K) for each component K of

G'[vV" - X] and an edge joining n{x) to n(K) if x is adjacent (in G') to

some node of K. If there is no l1-matching which covers every node n(x) of

6 then, by Hall's theorem, there is a set X C X' such that fewer than IXI
nodes v(K) are adjacent to X.

‘; If v € ?, then cV(X - X) - IX - X1 > cV(X) - IX! a c?ntradiction. So v E X.
‘) _ Let u€X' - X and X = (X' - {u}) - (X = {v}). Now <"(X) = 1x1 > (0 - IxI

‘ which is again a contradiction. So G has a matching that saturates X'. As
earlier this matching can be utilized to construct a {0,2}-matching x* of

G'(V') which satisfies x'(E') = IV'I - (¢ (X) - 1X'I).

(

e A el

—n .
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3. General Facets of P(G)

We discuss three topics in this section. First we establish some
necessary conditions which must be satisfied by any facet inducing non-0-1
inequality of P(G). Second, we describe such a class of non-0-1 inequalities
having the following property : For any pair (s,s+l) of consecutive
positive integers, there exists a graph G and a facet inducing inequality
whose coefficients include s and s+l. Third we describe a lifting
procedure which allows us to obtain facets of P(G) from facets of P(G')
for a subgraph G' of G,

Let ax 3 a be an integer inequality. We say that this inequality is
non-(0-1) if it is impossible to scale the coefficients so that aj € {0,*1}
for all j € E. In other words, there exist two nonzero coefficients with

different magnitudes. If t 1is a tour of G = (V,F), we let E(t) ={j€E : tj=1}.

Theorem 3.1 [et ars a be a ror=0=1 frzet i{ntirno inecuality for PI(7),

Let F = {jeF ta.%0) and let 7* be the subgrarh of 6 induced by the
e

edges in Y. ret M be the sot of {7,"}-rmatehings x satisfying ar = a

and let T be the set of tours t satisfying at = a. Thex

(3.7) a,.>0 for all ,1'EE'+ ar?  a>d,

(3.2) every x €M {g a nr-matohiva of §:
(3.3) } contains a np-matching leficient at everu node of f;
(3.4) any basis of T U ' nontatms at least one tour t  for which

E(t) C F¥ there exists a basis P of T UM such that everu

t€EB satisfies |F(t) - EY| s 1.

Note that (3.4) implies that ¢t is a spanning, hamiltonian subgraph of
G, which of course implies that ¢t is hypomatchable. Condition (3.3) adds
that M contains a np-matching of G deficient at every node of G.
Moreover, there exists a basis of M U T, thus, a subset of the points
sufficient to uniquely define the facet, consisting solely of np-matchings

and tours which are either contained in G' or else induce hamilton paths in ¢!
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Proof. Since P(G) 1is of full dimension, the affine rank of X = MUT
must be |El, so ax = a is the unique hyperplane containing all elements
of X. Since ax s a is a pon-0-1l-inequality, Lemma 2.11 yields a ¢ O,
which in turn implies a > 0, so (3.1) is immediate. Now we show that ¢t
must be connected. If not, let K be a compcnent of 6" and let a' and

a" be defined by
a if j € E(K)

3 0 otherwise

0 if j € ElK)

ai otherwise
. 1 2 1 0.2 .
If there exists x ,x € X sych that a'x™ > a'x", then we can find such

xl,x2 € M. For let t € T. Since we assume G' is not connected, E(t) N et
will consist of some number of disjoint paths, and consequently can be
expressed as the average of two {0,2}-matchings xl,x2 both of which must

2 2
1 s a't € a'x and so one of xl,x

be in M. But then we must have a'x
would serve as a substitute for t. Since, therefore, xl,x2 € M we can
define x' equal to xl on E(K) and equal to x2 on the rest of G and then
ax' > a, a contradiction. Therefore

(3.5) 6% is connected.

If every x € M satisfied x(8(v)) = 2 for some v € V, then since

every t €T must satisfy t(8(v)) = 2, we must have ax & a being a
degree constraint (2.10). Since we have assumed that ax & a does not
induce a 0-1 facet, we must have, therefore,

(3.6) for each v € V there exists x € M such that x(é(v)) = O,
Now we show that

(3.7) every x € M satifies x(E¥) = Jvg*y! -1
which will rean that every x € “ induces a no-matching of ct.

Suppose that some x € M satisfies x(8(wNE™) = x(6(v)NE®) = 0
for some u,v € v(GY). Assume that x,u and v are chosen so that the

distance in G' from u to v is minimum. (This is well-defined in view A
of (3.5).) If u and v were adjacent in G+, then by defining xj z 2 for an

edge of 5’ joining u and v, we would violate the validity of the
constraint ax S a. There therefore exists a node w on a shortest path

in 6* from u to v and by (3.6) we can find x € M satisfying =x(&6(w))=0,
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If, starting from w, we follow the path in G+, consisting alternately of
edgef with xj = 2 and ij = 2, and replace the values of xi with those
of X for the edees in the path, then we will obtain a (0,2 }-matching
x* €M deficient at w and (at least) one of u,v. But this contradicts
the minimal distance property of x,u,v. Thus !V(G+)f is odd and (3.7)
is established.

If T =¢, or if there exists a basis B of M UT which is contained
in M, then ax 5 a must be the constraint x(E+) < W(G)! - 1 since,
by (3.7), every element in the basis satisfies it as an equality. This is a
0,1 facet and thus it must be of the type (2.11) or (2.12) by Theorem 2,12,
Since we assume ax g a. is not a O-l-constraint, therefore, every basis of

MUT contains at least one tour.

(We remark that to this point this proof parallels a proof of Lovasz
(12], who gav: a nonalgorithmic proef of the sufficiency of the linear
system (2.6)-(2.8) for the l-matching polytope.)

So we must have T ¢ @, We will show 7 _
(3.8) for anv tour t € T, either E(t) EE' opn else E(t) induces a

hamilton rath in at.

For suppose E(t) ¢ E'. Then there is j € E(t) with a, = 0 and

E(t) - {3} consists of the edges of an even length path of G. This path
can be expressed as the average of two complementary np-matchings x1 and
x2 of G, and at = .5 axl + .5 ax? = a which implies that xl,x2 EM
(since every x € P(G) satisfies ax g a)., If E(t) N E’ is not a hamilton
path of G*, then it is easily verified that one of xl,x2 will violate

(3.7). Thus (3.8) is established.

Now in order to complete the proof, we must show that .
(3.9) there exists a basis B of T UM such that every t € B*

satisfies IE(t) - EY] « 1.
This will imply that ' isa spannine subgrach of G, and hence
(3.7) will imply (3.2), which combined with (3.6) will prove (3.3).
Let B be a basis of MU T containing a minimum number of tours t
for which [E(t) - E+| > 1, and suppose that t is such a tour. Then E(¥)
induces an (even length) hamilton path n® of G+, amd E(%) - EY consists

of a single odd length path nl, which contains an even number of nodes

(including the end points u,v which are nodes of ch). See Figure 3.1.

o e o I




Figure 3.1

Moreover, since |E(E) - E¥| > 1, we have |E(n1)l 2 3. Now for each
w € vt o= V(nl) - {u,v}, let x" be the np-matching of G obtained by
taking the (unique) perfect matching of the path obtained from t by
deleting .

Let s € V(G") - {u,v} and let x €M satisfy x(8(s)) = 0 and
ij =0 for all j €& et. Ry (3.6), there exists X €M satisfying the
first property, and we can simply require ﬁj E'O for all j €E - A
Finally, let x be obtained from % by giving X. the value two for the
second,fourth,etc. edges of nl. Then X € M. Now gt can be easily verified
that

-

V¥t =2 (x" : wev¥ ) + % - x,

so ' T is a linear combination of M' =z { x¥ : we v* } U { &, ; b
Moreover, a = at = (1/[V*]) I (ax" : w € V*) + a - & so we must have
L (ax¥:wevt) = lV*l a. But since every x" satisfies ax" s a, we
must have, therefore, ax" = a for all W€ v*. Therefore Mt'E M, and
so any basis of B - {t} U M will be a basis of M U T which contradicts
our choice of B. Thus (3.9) is established.

Finally, note that if there existed a basis B of MU T such that
every tour t € B satisfied |E(t) - E¥| = 1, then every x € B would
satisfy x(EY) = [v] - 1,s0 our constraint would necessarily be the inequality
x(EY) s vl -1 which induces a 0-1-facet of the form (2.12). Thus
(3.4) is established and the proof is complete.

(

The consequences of this theorem are quite important. It shows that any

facet inducing non-0O-l-inequality must come froma (spanninr) subgraph of

G which con*ains hamilton cycles of G. We now examine such a class of facets.
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A simple example of a graph G for which P(G) has a non 0-1 facet
is the graph of figure 3.2 (a). If we let a = ( ay j €EE ) be the
vector of edre coefficients indicated in the figure, then ax » 1lu

a facet of F(G).

e an

(a) (b)

Figure 3.2 Gragh G for which P(G) has a non 0-1 facet.

It is easy to verify that the inequality is valid; we show that it is a
facet by exhibiting |E(G)| = 12 affirely independent members of P(G)

satisfying ax = l4. These will consist of eleven {0,2}-matchings

and one tour. In order to obtain the {0,2}-matchings, we consider the

seven np-{0,2}-matchings of the centre heptagon and extend each:to a

np~{0,2}-matching of G by setting X5 = 2 for the edge j joining

u and v. These are easily seen to be independent and use only the edge j

of the graph G' obtained by contracting the heptagon. (See Fig. 3.2 b).

We can give any one of the other four edpes of G' the value two

and extend it to a np-{0,2}~matching of G which is near perfect on

the heptagon, and thereby obtain four more. Finally, the unique tour in

G is affinely independent from the {0,2}-matchings and so we are done.
Notice that the idea of the construction was to take a large set of

np-{0,2}-matchings which were also near perfect on a certain induced

subgraph, and then complete them with a tour. This provides the basis for

a general construction,

Let G' = (V',E') be a subgraph of a hamiltonian graph G. We define

T (G")

[

{V'| - max { t(E') : t is a tour of G ).

We call t the sefsment number of G'; it equals the smallest number of

»
. ‘_.; P T
. i ’ . 4
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segments of some hamilton cycle of G which cover all the nodes of G'.
For example, if H is the heptagon of Figure 3.2 a, then 7t (H) = 2.
If G is non hamiltonian, then the function <t 1is not defined.

For any S E V for a graph G = (V,E) we let G x S denote the
graph obtained by contracting the subgraph G [S] to a single pseudonode.
Thus, in Figure 3.2, G' = G x V(H).

Theorem 3.2 . Let G = (V,E) be hamiltonian, let G'= (V'E') be a node

induced subzraph of G and suppose that

(3.17 7' {8 huromatchable and nonseparable

(3.11) CGx V" <s hupomatchable ~vd nonseparable.

Let a=(a,: JE€E F) be defined by

T () :for jem
a.
7 t(G') -1 for jE E-E'

and let
ez (T () -1) (v} -1)+ |v) -1,
Then axs a <induces a facet of P(().

Proof. We first proof the validity of ax £ a. If x is a {0,2}-
matching of G, then x (E) s |V] -1 and x (E') s |[V'| - 1 and
ax S a. Moreover ax = g' if and only if X is near perfect on both G
and G'. If x is a tour of G, then X (E) = |V| and X (E') s |V'|-t(G')
so ax = T(G')R(E') + (1(G')-1)X(E-E') s (7(G")-1)(|V{-1) + |V'|-1 = a,
and we have ax = a if and only if X (E') = |V'| - ©(G'). Since ax s a

is valid for all vertices of P(G), it is valid for P(G).

We show that ax € a is facet inducing by exhibiting |E| affinely
independent members x of P(G) satisfying ax = a. By (3.10) and
Proposition 2.4, there are |E'| affinely independent np-{0,2}-matchings
of G'. Let x be any np-{0,2}-matching of G x V' which is deficient
at the pseudonode V'. We extend each of our np-{0,2}-matchings
of G' to a np-{0,2)}-matching of G by defining it equal to X on
E-E'. Let X° be the set of affinely independent matchings thereby

obtained. Then ax = @' for all x € X°,
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By (3.11) and Proposition 2.4 there are [E -E'| affinely
independent np-{0,2}-matchings of G x V'. Let X be such a set, which
contains ;, and let X1 be obtained from X - {;} by extending each
x € X - {;} to a np-{0,2}-matching of G. Then X' 1is a set of

[E - E'| - 1 affinely independent {0,2}-matchings of "G, each x € X1

satisfies ax = a, and it is straightforward to verify that x° U X1 is
affinely independent.

Finally, let t be a tour of G satisfying t(E') = 1(G'). Then at = a,
and since +t(E) = (V| but x(E) = |[V] -1 for all x€x°U Xl, we see
that x° U X* U {t} is affinely independent completing the proof.

{

Thus, the example of Figure 3.2 is simply an application of Theorem 3.2,
taking G' to be the heptagon. The smallest grapg G we know for which
P(G) has such a facet inducing non-(0-1)-inequality is the example of
Figure 3.3. We let G' be the triangle, and then =x(E - E') + 2x(E') < 8
is facet-inducing.

righthand side = 8

Figure 3.3 Seven node graph for which P(G) cannot be described
by a set of (0-1)-inequalities.

The graph of Figure 3.4 is a nine node example of a graph for which P(G)
has a facet-inducing inequality with coefficients 2 and 3. Again G'

is the cente: triangle. Then T(G') = 3 and 2x(E - E') + 3x(E') s 18
is facet inducing.

righthand side = 18

Fig. 3.4

;',; - e
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We obtain a facet inducing inequality of P(G) for a graph G containing

any desired consecutive pair (s,s+l) of integers as its nonzero
coefficients by a generalization of the construction of Figure 3.u4. Start
with an odd polygon P having k nodes, for k 2 s+l. Then attach s+1
" ears " - paths of length three - to adjacent pairs of nodes of P.
Finally choose some node v* which is an interior node of some ear. Join

v* to the non-corresponding node of each other ear. Then for this graph G

it will follow from Theorem 3.2 that R
(s+1) x(E(P)) + s x(E - E(P)) = sk + 25~ + s + k-1 1is facet inducing

for P(G). See Fipure 3.5.

Figure 3.5

Suppose we have a spanning subgraph G' = (V,E') of G and suppose we
know a facet inducing inequality a'x € a' for P(G'). We will say that a

facet inducing inequality ax s a For P(G) is obtained by lifting a'x & a' if

a'= a
'

aj a'j for a11 j € E'. ‘
In other words, we do not change the existing coefficients or righthand
side, we simply define those not previously defined in such a manner that
the resulting inequality induces a facet of P(G).
A simple method of obtaining such inequalities is fhe following

sequential lifting procedure.

Procedure 3.3 [Sequential Lifting]

Input : G = (V,E), a spanning subgraph G' = (V,E') and a facet
inducing inequality a'x S a of P(G').
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Output : A facet inducing inequality ax £ a of P(G) obtained
by lifting a'x = a.

Procedure

(0] Initially, define aj aj' for j € E' and let S = E'.
S is the set of edges for which a, has been defined.

]
f1] For each j € E - S, do the following

[1a] Let u,v be the ends of 3. let

aj = min {1/2 (a - ax) : x is a {0,2}-matching ' !
of the graph (V,S)[V-{u,v}]}
U {a - ax : x is the incidence vector of a |
hamilton path in (V,3) from u to v}. %
{1b] Let S = s U {j}. |

End

Notice that sequential lifting leaves all old coefficients and the

righthand side of the inequality unchanged. The idea is to (sequentially)

define each aj as large as possible r~uch that the inequality will remain ?
valid, considering edges in S U {j}. Further, suppose we have a set X'
of |E'| affinely indpendent members x of P(G') satisfying ax = a.
We can enlarge it to such a set X for ax S a and P(G) by adding
the following step:
[1e] For each X € X', add a new component x. = 0. If the minimum
in [1a] was achieved by a {0,2}-matching, let ;j be this
{0,2}-matching extended by defining ;g = 2, If the minimum
was achieved by a hamilton path, let §j be the tour obtained
.by defining ;% = 1, Let X' = X'"U {ij).
Then if we let X be the final X', the " triangular structure " of the ;j
will assure that X 1is affinely independent. This verifieas that ax s a
is indeed facet inducing for P(G). This means, of course, that we will
always finish with a 2 0. (See Theorem 3.1).
Sequential lifting can be applied in many different orders to the edges,
generally resulting in different lifted inequalities.Moreover, there can be
facet inducine inequalities of TP(6) obtained by lifting from a'x Z a',

but not obtainable by sequental lifting.




Qur main interest in this procedure is that it shows that "unpleasant "
facets are, in effect, retained when edges are added to the graph. In
particular, if we were to restrict our attention to complete graphs, Theorem
3.2 and Procedure 2.3 show that for n sufficiently large, there is a
facet inducing inequality containing any desired consecutive pair of
positive integers among the coefficients.

Finally, we can see, using Theorem 2.1, that the new coefficients
defined by sequential 1lifting will never be larger than the largest
previously existing coefficient, and generally, these new coefficients
tend to decrease to zero as more edges are added, until some constant
value is obtained. We conjecture the following :

Coriecture 7.4 [Let K be the comrlete craph o n nodes. For any

:
. . . v . A .
pesitive Tntecer s, there exicss an Duteser J(s) such *hat “or n < N(s),

- .

there 1s a fuacet inducina inequality of F(K ) whose coesficients

inelude all integers from (O to s.
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4, Facets of the Travelling Salesman Polytope

In this section we discuss the relationship between facets of TSP(G)
and facets of P(G). Most studies of TSP(G) are restricted to the case of G
being a complete graph, because solving travelling salesman problems on
complete graphs is polynomially equivalent to the more general problem. An
interesting feature of the results of the previous sectidons is that they
do apply to general graphs. However, in this section we too will restrict
ourselves to complete graphs to facilitate comparison with previously known
results.We adopt the notation of Grdtschel and Padberg [10] and let Q? de-
note TSP(Kn) . We let Bn and Vn respectively denote the edge set and !

node set of Kn . First we mention two preliminary results.

Proposition 4.1. ({10] Theorem 2.2.) The dimension of Q’; ts n(n=-3)/2 =
lEnl - ‘an for nz23 .

Corollary 4.2. The minimal affine spac~2 containing Q; 18 equal to £

(x €M : x(6(1)) = 2 for all L€V ) ;

The importance of this corollary is that it completely characterizes which
inequalities induce the same facet as some presribed facet inducing inequa-

lity for Q; . We summarize this as follows.

Corollary 4.3. Let axsa be a valid inequality for Qg « Then for any

A= (h.€ER: 1€V, ) and any u>0 , the inequality

(4.1) fua)r + £ A x(8(Z))spua + 2M(V )
, 7 n
1€V
n
18 a valid ineguality for Q'; . Moreover, if we let F= {xEQr} P ax=a},
then the set of members - of Q? satisfying (4.1) with equality is F .
If F s nonempty, then every inequality whose corresponding hyperplane

.3{ intersects Q’;, in exactly F <& of the form (4.1) for appropriate n
and A .

O0f course, this corollary is a specialization of a fundamental polyhedral
result: The inequalities in a linear system that defines a polyhedron are

only unique up to positive multiples and the addition of equations satisfied

by all members of the polyhedron.

For the remainder of this section, we let Pn 5 P(Kn) , for nz23 . We now

prove a basic result relating the facets of Qt;, and Pn for nz3 ',‘ odd.
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n . .
It states that for each fac::;t F of QT » there exists a unique facet [
of Pn such that F=F' ﬁQT . This uniqueness is not true for general po-
lyhedra, as illustrated in Figure 4.1. Tn each case the 'ridge pole" is a
face of the "tent" and the marked end of the ridge pole is a facet of the

face. Figure #4.la has the uniqueness property, but Figure 4.1b does not.

Face A
Facet
of Face E
(b)

Finally, we remark that the proof of the following theorem will consist of

Figqure 4.1

an algorithm which starts with a facet defining inequality axsa. of Q?
and transforms it into a facet defining inequality of Pn s which defines

the same facet of Qf; .

Theorem 4.4. For any facet F of Q?, » there exists a unique facet F'

of Pn such that F:F'QQ; .

Proof. Let F be a facet of Q? and suppose that [ = {x€Q¥ : axsa}

where ax$a is a valid inequality for Q? . We assume that az20 . If not
we add sufficiently high multiples of degree constraints so as to have this

prooerty. If we consider the inequality

(4.2) ax + L Ay x(8(i)) s a + 2L Ay
iev iev

Wwe can see that varying Ay for a node i has no effect on the feasibility

of a {0.2) matching x satisfying x(§(i)) = 2 or on a tour x which

also must satisfy x(g(i)) = 2 . However, if x is a {0, 2) matching defi-

cient at i , then by choosing an appropriate value from Ki s We can ensure

(4.3) every (0, 2) matching deficient at i satisfies (4.2),

(4.4) there exists an np- {0, 2) - matching deficient at i which satisfies

(4.2) with equality.

Nt g
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In fact it can be verified that this is given by
(4.5) )-iE 1/2 max{ax-a:x is a {0,2) - matching of G deficient at i} .

Since a20 , this maximum will always be attained for a near perfect matching.
Since the choice of deficient node provides a partition of the near perfect
matchings, the A; are determined independently and uniquely. Thus, using
Corollary 4.3, there is a unique (up to a positive multiple) ineauality

that is valid for Q,? and Pn’ induces F and satisfies (4.3) and (4.4%),

two necessary conditions for it to be facet inducing for Pn. This is (4.2)
with )‘i defined as in (u4.5). Let F' = (x g Pn: x satisfles (4.2) with '’
equality, for i, as in (4.5)}. We show that F' is a facet of F_,

Since F is a facet of O; » there exists a set T of lEnl - |Vn|
affinely independent tours satisfying (4.2) with equality. For each node i ,
our choice of A\; ensures that there exists a np -~ {0,2} -.matching xi de-
ficient at i §atisfying (4.2) with equality. Let M= {x': iGVn) . Then for
each iEVn . x> is the only member of TUM which.does not satisfy x(§(i))
= 2 . Thus it is affinely independent from TUM~- {x'} . Therefore TUM is
affinely independent of cardinality !En| so F' 1is a facet of Pn and

F'nPn=F. 0

Perhaps surprisingly, there are presently only three classes of facets for
Qr,;. appearing in the literature. The first such class, the so called "trivial"
facets ,are those induced by nonnegativity constraints xj 20 for all jEEn
({10] Theorem 3.2). These obviously correspond to the inequalitities (2.9) for

P .
n

The second class of facets are those induced by the subtour elimination con-
straints x(¥($))s|s| - 1 for SCV_ » 2% S| sn=1 ([10] Theorem 6.1). For
any such S , the subtour elimination constraints corresponding to S and
vn- S induce the same facet of Q? . (Simply sum one half the degree con-
straints for all nodes in Vn- S , subtract one half the sum of degree con-
straints for nodes in S and add this to the constraint x(y(S))s|S|-1.)

In particular, the edge '"capacity"” constraints xj €1 for j€E induce the
same facets as the subtour elimination constraints for the cardinality n-2
subsets of Vn . By Theorem 4.4, there exists a unique facet of Pn which de-
termines this "doubly defined" facet of Qn . Of course, this is the inequali-
ty (2.11) for the odd cardinality one of |[S| , an- s| .

The third class of facets, induced by generalized comb constraints is more

complex. Let W,C V. for i=z0,1,...,k satisfy

(4.6) [WonW,| 21 for 121,2,...,k
(4.7) W, =W [ 21 for i=1,2,...,k
P

.- i e Nes g . -
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(4.8) [winwj[=o for 1si<jsk
k k

Then we call the graph C with nodeset U We and edge set U y(W,)
i=0 i=0

a comb in Ky 3 Wo is the handle and wi are called the teeth for 1iz1,...,k.

The comb inequality ccrresponding to C 1is given by

k k
£ ox(rw.Ns|w ] + £ (|w,]-1) - Fx/21
. 1 o N 1

i=0 i=]

where for r€R , "frV" denotes the smallest integer no less than r .

Note that the coefficients of a comb inequality will be 0,1 or 2. Such in-
equalities were introduced by Chvatal {1] who required equality in (4.6), re-
sulting in a 0 -1 - inequality. We call such a comb simple. In a simple comb,
each tooth has exactly one node in the handle. In a general comb, a tooth may
have several nodes in the handle, and all edges ioinirg these nodes have coef-
ficient two in the inequality. A major result of Grdtschel and Padberg ([10]
Theorem 6.2) is that for k23 , odd, every comb inequality induces a facet of
QT

It is a routine matter to apply the procedure of the proof of Theorem 4.4 i
in order to find the corresponding facet inducing inequality for Pn . He

illustrate this with the following.

Theorem 4.5. Let C be a gimple comb having ain odd rumber k of teeth such
that |v(C)| is even. If |V(C)| S n=Tk/21 , then the facet of P, cor-
responding to the facet of Q? s induced by the comb inequality for ¢ <is

obtained by sequentially lifting a facet of the form of Theorem 3.2 for a sub-
graph G of K .

Proof. Let axs a be the comb inequality corresponding to C . Let G be
the spanning subgraph of Ky whose edge set consists of E(C) together with
those edges having at least one end not in the comb. That is, we exclude those

edges both of whose ends are in V(C) , but which are not in E(C) . We will

show first that an application of the procedure of the proof of Theorem 4.4

obtains a facet inducing inequality for P(G) of the form of Theorem 3.2.

We first compute the value xi for each i€ Vn s as given by (4.5). For
ie v(C) , the maximum value of ax for a {(0,2)-wmatching x deficient at i
is |vc)| - 2 . For i€ Vn-V(C) , this maximum is 'V(C)' . Therefore
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172 Tx/z1 -1 for 1i€V(C)

. 172 Cx/20 for 1€V -V(C)

When we use these values of )‘i in (4.2), we obtain the following new
coefficients a:'i for each edge j .
k/27 -1 for jEE(C)

al! = /27 -1 for JFESV(C))

[N P

fic/21 for jEY(Vn-V(C)) .

Now let S=V -v(C) . Then G[S] is a complete graph on an odd number
"of nodes, and so is hypomatchable and nonseparable. The graph GXS can also
be easily checked to be hypomatchable and nonseparable. Because |S| =n- |V(C)!
2 Tk/2' , 6 is hamiltonian. Moreover, the segment number Tt(G[S])=1t(C)=

'k/21 so the coefficients a]! are in fact given by
t(c[s]) for JE¥(S)
. J 1(6[s])-1 for JEE(G)-Y(S).
These then are the coefficients of a facet of the form of Theorem 3.2 for
G , so the resulting right hand side, o' , must equal
(t(G[S])~1)n-1) + |S| -1
! : l as presoribed by the theorem.

. Now let a"xsga" be the facet of Py corresponding to the comb inequality

for C . By again using the procedure of the proof of Theorem 4.4, we see that

7

.l a" for 3JEE(G)
a" = j
] w(c[s])-2 for JEE_-E(G)
a": a' .

We will complete the proof by proving that the values a'J' =t(c[s])-2 for
jeEn -E(G) are those given by sequential lifting.

Suppose that we have sequentially lifted the coefficients for the edges of
some (possibly empty) subset of B -E(G) and obtained the desired value. Let
JeE: -(JUE(G)) . Let u,v be the ends of j , let GJ denote the graph
(Vn,JUE(G)) , and let G:l denote GJ[V - {u,v}] . Then the maximum value of

a {0,2) - matching of EJ is a'- 2(1'(G[S]) =1) . The maximum sum of the edge

A e Tty RS 4t 1
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costs of a hamilton path in 6 J from u to v is a'-(t(G[S])-2) . Thus

sequential lifting will define ag =1(G[S]) - 2) and the proof now follows by

induction. 0

Figure 4.2 illustrates a small example of this process. Let C be the ten

node-five tooth comb of

(a) (b)
Figure 4.2

Figure u4.2(a), in K The comb inequality gives each edge the coefficient 1

and has a=7 . Thelzraph G of Figure 4.2(b) consists of C , the subgraph
induced by the set S of non-comb nodes and all edges joining these two parts.
. The procedure of Theorem U.4 calculates Ai =1/2 for the nodes i of C and
xi =3/2 for the nodes i of S . Thus the coefficients a% are as indicated, three
for edges of v(S) and two for all other edges and a' =26 , Sequential lifting
will then cause all edges of Ela-E(G) to have the coefficient one, which

;. induces the facet of P corresponding to the facet of Qﬁ? induced by C .

13
It is certainly possible to study the results of applying the procedure of
Theorem 4.4 to combs having an odd number of nodes. In fact, this can be used

to provide other classes of non -0 -1 - facets of Pn . However, for the remain-

der of this section we wish to briefly discuss cases when facet inducing ine-
qualities of Pn induce facets of Q? . In particular, for inequalities of the

form (2.12.), those induced by hypomatchable nonhamiltonian nonseparable edge

';Qn‘\_ I

maximal subgraphs. A graph G 1is sai to be hypohamiltonian if G is nonhamil-

tonian, but G- {v} is hamiltonian for all v€V . It is an easy exercise to
verify that if n is odd, then any edge maximal spanning hypohamiltonian sub-
graph of X_ satisfies our conditions of (2.12). Grdtschel [8] showed that

>

a

those spanning edge-maximal hypohamiltonian subgraphs of K, which satisfy

- e e s — —-——— . P -
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a certain technical property, do induce a facet of the monotone travelling
salesman polytope. (He did not settle whether or not this technical property
was indeed necessary.) Thus there is an obvious correction between our in-
equalities (2.12) and the monotone polytope. For the travelling salesman poly-
tope itself, some inequalities (2.12) are facet inducing and some are not. For
example the inequality (2.12) for the graph G,y of Figure 4.3(a) is facet in-
ducing for Q; » but that of the graph G, of Figure 4.3(b) is not. (MNote that

both graphs satisfy the necessary conditions for (2.12) to apply, but neither :
1§ ‘hypohamiltonian.)

rhs =6 '
¢ €,
(a) Facet inducing (b) Not facet inducing
7 7
for Qp for QT
Figure 4.3

The inequality (2.12) for Gl is equivalent to the facet inducing inequa-
lity of the comb obtained by deleting node v . On the other hand, edge 'j of
G2 belongs to no hamilton cycle of K, which contains six edges of G2 + There-

fore the inequality (2.12) for Q; is implied by the nonnegativity constraint
for edge j .

However, there are examples of inequalities of the form (2.12) which are
facet inducing for Qg and which do not seem to arise from any known class of
facet inducing inequalities., For example, the inequality (2.12) for the modi-

fied Petersen graph of Figure 4.4 is facet inducing for Kll . .

Figure 4.4 Mcdified Petersen Graph




This can be shown using a slight modification of the proof of Maurras {13]

10

T where [ is

that the inequality =x(E) £ 9 is facet inducing for Q

the edge set of any subgraph which is a Peterson graph.
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5. Concluding Remarks

When we wish to study a polytone such as the travelling salesman
polytope, which is not of full dimension, we generally have considerable
choice as to which full dimension polyhedron (if any) we will embed it in.
We have studied, here, a particular polyhedron, Pn, which has several
interesting properties. First (Theorem 4.4), for any facet of Q; » there is
a unique facet of Pn which intersects Q? in exactly this facet. Thus we
can partition the facets of Pn into three classes : those that contain
all of Q? s those that contain no facet of Q? , and those thit intersect Q;
in a facet. Theorem 4.4 shows that there is a bijection between the facets
in the third class and the facets of Q?.

In Theorem 2.12 we completely characterized those facets of P(G), for
general G, for which the inducing inequality can te scaled so as to have
0-1 valued coefficients. The most interesting set of facet inducing 0-1-

' inequalities were those of (2.12). At the end of the previous section we
saw that some of these do indeed induce facets of TSF(G) itself.
In Theorem 3.1, we determined several properties possessed by non-0-1

inequalities which induce facets of P(G). One of these properties is that

the subgraph of G induced by the edges having positive coefficients in

such an inequality must be spanning, and indeed, must be hamiltonian. This

has one rather negative consequence : Such inequalities will probably be

i harder to use in a cutting plane approach than, for example, the comb inequa-

lities which have been used so successfully by Grdtschel [9] to solve a

,f " real world " travelling salesman problem. However, a possible area for
Ié future research would be to see if " simpler" equivalent inequaiities
.ﬁ (for TSP(G)) can be found for classes of such inequalities.
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(#) We completely characterize those facets of P(G) which can be induced
by an inequality with O-l-coefficients.

(1¥) We prove necessary properties for any other facet inducing inequality,
and exhibit a class of such inequalities with the property that for any pair of
consecutive positive integers, there exists an inequality in our class whose

coeffjicients include these integers.

(1i#) We relate the facets of P(G) to the facets of the travelling salesman
polytope. 1In particular, we show that for any facet F of the travelling salesman
polytope, there is a unique facet of P(G) whose intersection with the travelling
salesman polytope is exactly F.
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